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INFLUENCE OF BACKGROUND ON THE FORM OF SPECTROCHEMICAL
CALIBRATION CURVES

H. Kaiser

I. Introduction /297*

The way in which the background in the spectrum must be

taken into account in measuring the intensity ratio d" two

spectral lines is well known. Numerical tables for the required

conversions were published in a work of M. Honerjger-Sohm and

H. Kaiser [2]. In this work an additional slide (U-slide) is

recommended as a special accessory for the Owens analyzer [6].

This makes the background correction so simple that it can be

carried out by trained technicians in the everyday work of a

spectrochemical laboratory. Nevertheless, it would still be

desirable to avoid the additional work always associated with

the background correction, whenever the systematic errors in the

analysis can be tolerated. This gives rise to the follBowing

questions:

When must the background be taken into account? What sys-

tematic errors will appear in the result of the analysis when

the background is neglected?

If the background is ignored in drawing up a'i'calibration

curve, how can this curve be converted as a whole to the associated

calibration curve with the background correction?

How can calibration curves in which the background is ignored

be continued into the region of lower concentrations in which the

background must be taken into account?

Since these questions have not yet been systematically

treated, this will be the goal of the present work. To date,

*Numbers in the margin indicate pagination in the foreign text.
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only examples have been published, e.g. in a report of G. Balz

ll], which shows how a calibration curve bent by the influence

of the background is broadened by the correction.

II. Calibration Lines and Curves /298

As in previous works, we use Y for the logarithm of an

intensity and AY for the logarithm of an intensity ratio. We

wish to assume that the universal main calibration curve of the

spectrochemical method under consideration is precisely a straight

line, onceu the background has been taken into account. This

assumption will be valid in most cases. We therefore formulate

the following calibration equation:

log k = A YI + logk. (1)

We use the Greek letter n for the slope of the calibration

line, by analogy with the symbol y for the slope of the density

curve. kO is the concentration at the fixed point (AYG = 0).

The index G to AY is to indicate that the intensity ratio is to

be taken between the analyzed. line L of the alloying element Z

and a line of the base element G. When we take

we must first calculate YL by a background correction from YL+U
[U = background] this is because the immediate result of the

density measurement is just the intensity for the line and back-

ground (L + U) together.

We now introduce the intensity ratio of the analysis line

of the alloying element Z against its background UZ: AYU =L -

- YU , and using the identity

AY d ==AYo+(Y.- YUz)

we obtain from Cl) the general equation for the calibration

curve measured against the background:
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JlA YU - - ' YUz) logo. ]//... - . (2 )

K In general, (YG - YU ) is still a function of k. So that the

calibration curve against the background will also be a straight

line, we wish to assume that YG U logk . Accordingly, we

can assume, without loss of generali y, that YG - YU is constant;

otherwise there would just be a different value;'for n in (4).

We introduce a new constant by the equation

Iogk'= logko -(Y- z) (3)

kU is the concentration at which the intensities of the line and

the underlying background are equal. The bar above the expression

in parentheses indicates that the mean value of this quantity /299

should be taken from different calibration spectra. For the equa-

tion of the calibration line measured against the background, we

obtain

Slog k A Yi + ko U. (4)

We will call this form the (true) calibration line to dis-

tinguish it from other calibration curves to be considered later.

Assuming that the true calibration curve is a straight line at

this point will not involve any loss of generality in subsequent

considerations. This assumption is valid in most cases; further-

more, later developments will show that deviations from the

straight line can be directly worked into the theory (see Eqs.

(5) and (6)). However, the further assumption that YG U is

constant Cor at least a simple, monotonic function of k) isZ

necessary. We can make statements about the influence of the

background on the calibration curve as a whole only when we know

the behavior of the background as a whole, i.e. as a function.

If the background depended on incidental ,factors, e.g. certain

additives in the specimens, nothing at all could be said about

the calibration curve without the background correction; there
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would be no alternative but to deduct the background from the

analysis lines in each individual case and to use the main cali-

bration curve (1). Equation (4) with AYU could not be formulated.

Nevertheless, the requirements on the constancy of YG - YU do

not have to be as strict as e.g. those on the constancy of the

measured value AYG in repeated spectra of the same specimen in

a method for precise quantitative analyses. Namely, using the

abbreviation

YL + u- Y, -- log x,

the quantity D relevant for the background correction is equal

to log x - log (x - 1) [2]. In transferring the background

fluctuations to the correction factor D, it is the derivative

which is crucial

- dD i
dlogx x--1"

This transfer factor is smaller than 1, as long as the line by

itself is stronger than the underlying background; in that case,

x > 2.

If the line is not too weak in comparison with the back-

ground -- and that will usually be the case in precise quantitative

analyses -- inhomogeneities in the Itensity of the background /300

will have a diminished effect on the correction. In that case,

taking the correction for a mean background intensity will not

cause any large errors. Only experience will show what is per-

missible in such cases.

If the background for different specimens is not quite

equal, no reasonable calibration curve would be obtained by

taking the value of AYU Y'L YU from the measurements for

each specimen. However, we need Eq. (4) for the true calibration

line expressed in terms of the background. Therefore, we express
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the line intensities in terms o.f a mean normal background, cal-

culating AYU from AY by adding YG - TU " This puts everything

in the definition of kU in Eq. (3). Z

We should also point out that so far we have spoken only of

the background lying behind the analysis line. We do not care

about the background at the point of the base line. If its

ratio to the base line is constant, it does not have to be taken

into account, since it would only change the value of AY by an

additive constant; if the ratio is variable, the background must

always be deducted.

We now formulate the equation for the bent calibration curve,

obtained when no background corrections are made. All associated

quantities are designated by an apostrophe. For example,

We obtain the equation of this (true) calibration curve by

combining the equation for a straight line with a correction

function h.

log hg = '. A iJ -l- 1og (i ). (5)

For the time being, the constants n', kU, and the function h

will remain completely undetermined; the power of this purely

formal approach will become evident later. We subtract (4) from

C5) and, using the abbreviation v = log k - log kU, we obtain

(6)i (yb) .= Y 1- - '.jI 1  - (6)

: 4 We set the quantity obtained directly from the measurements,

namely AYtV, equal to. logx. Then

At this point we introduce the neutral letter x for the intensity.
ratio, because we wish to treat it as a purely computational vari-
able. It would just be a nuisance if we dragged along the idea of
its physical significance.
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AY, = log (x -1). /301

This is because, returning to the intensities themselves,

A YU= Iog (,L/lU),

and

IL+I IL I
AJY log - log + 1).

From (6), we then obtain:

h(x)= qlog(x -1) -'logx + v. (7)

If values are now assigned to the constants n' and v, the

related function h(') can be calculated for each value of x.

From (5), we then acquire the equation of the true calibration

curve, in the derivation of which no background correction was

made. This equation can be used e.g. to find the deviations of

the calibration curve (5) from the calibration line (4). To do

this, we must merely set h' = n and v = 0.

III. The Equivalent Calibration Line

It is tempting to assume that the differences between (4)

and (5) calculated in this way would give the systematic errors

in the analytical values when the background correction (i.e.

using a bent calibration curve) is omitted and a straight line

used instead,4 because the curvature is hardly noticeable. This

assumption is wrong. In fact, the straight line employed for

analysis in such cases is not the true calibration line, but a

substitute calibration line, replacig ,the true calibration

curve in the relevant measuring range.

Figure 1 shows the true state of affairs. The true calibra-

tion line (designated AYU) and the true calibration curve AYt
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og differ only slightlynat high

.o concentrations when the line

of the element to be deter-

mined is strong in comparison

0.5s with the background. However,

the weaker this line becomes,

the further downward the

o calibration curve is pulled

by the influence of the

background. Finally, it

approaches asymptotically

the vertical line AY = 0,

which corresponds to the

intensity of the background

-d, by itself.
-os o 0.s to

Fig. 1. Calibration line (AYU),  How is the substitute
calibration curve (AY'), andU calibration line produced?
substitute calibration line for
a limited concentration range.
(All with respect to the mean' specimens with reliably
normal background. ) determined concentrations

Key: a. Calibration line kl, k2, and k3 for the main
b. Calibration curve
c. Substitute calibration calibration of the procedure.

line kI is at the lower end of the

intended measuring range, k2
at the upper end, and k3 roughly in the middle (on the logarithmic /302

scale). From the calibration spectra we find three measurements
4YU logx 1 , AY = logx 2 , and AY logx . If we ignore
measuring errors, anhe asociat U 3
measuring errors, ie associated poin s must lie precisely on the

calibration curve, as shown in Fig. 1. Since we have ignored the

relatively weak background, and not even measured it, we know

nothing about the true calibration curve and its curvature; we

see only three calibration points, which do not lie precisel y on
a straight line. If the deviation from a straight line is not too
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blatant, we will be inclined to draw a straight line past the

three points in such a fashionuthat the differences are minimized.

We are misled by our desire to make linear interpolations, and

we might even assume that the observed curfature is not real,bjbt /303

just simulated by erroneous analytical values for the calibration

specimens.

Instead of the true curved calibration curve, we draw the

substitute calibration line! One such line is drawn in Fig. 1.

It is important that a substitute calibration line is always

associated just with a fixed measuring range, in which it repre-

sents the best approximation to the calibration curve. Each

measuring range has its own substitute calibration line. We now

wish to know how the substitute calibration line is determined.

If we knew the position and shape of the true calibration

curve, the substitute calibration line could be determined e.g.

from the requirement that the mean square error over the entire

intended measuring range should be minimized. For the time being,

however, we do not know the true calibration curve, but have only

three calibration peints. (This is actually fortunate, since aBw

least squares fit would result in equations which cannot be solved!)

In such a case we proceed as follows: first we connect the two

outer measurements by a straight line and then, maintaining the

same slope, we shift the line toward the middlemeasurement until

all three points are equally distant from this line.

If in C7) we consider n' and v the constants of the substi-

tute calibration line, then h is just the difference between a

measured point on the true calibration curve and the substitute

calibration line.. The above rule for drawing the substitute

calibration line on the basis of the three measured points thus

yields the following conditions:
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h~xi) = h(x 2 ); (8a)

h(xl) = -h(x3 ). (8b)

Together with C7), (-8,) gives the equation for the slope n' of

the substitute calibration line

S log ( - 1) -- log (, - 1) (9)
log x, - log x2

(8b) and (7) imply

V . = lgo+log-1) +log 1 log(x - ). (10)

v was the abbreviation for logk U - log k. We thus have the

intersection of the substitute calibration line with the vertical

line AY = 0, i.e. the fixed point relative to the background.

The concentration k' associated with this fixed point will never

appear as an analytical result as long as we make no background

correction and use only the substitute calibration line; since

the line and background together are always greater than the back- /304

ground by itself, AY = Y - YU can never be zero. The number

v gives the displacement of the fixed point of the substitute

calibration line from that of the true calibration line (see

Fig. 1).

If we wish to return from background-based calibration lines

to those based on a line of the base element, we merely apply

Eq. (3) to the calibration line and the substitute calibration

line, thus obtaining for the displacement of the two fixed points

based in the usual way on the lines of the basecelement

log ko - log ko - 4- (, - I') (Yc YUz) Ci)

In general, the fixed point k' of the substitute calibration line

based on the line of the base element can naturally occur as a
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result of the analysis, namely when the intensity of the base line

is greater than that of the background at the point of the alloying-

element line. Figure 2 shows how these different calibration lines

are related.

"; 'Substituting in (7)

the constants n' and v

found for the substitute

S7calibration line, this

equation immediately gives

us the magnitude of the

improvement which we must

make in the value of logk

determined from the substi-

Fig. 2. Relative positions of tute calibration line.
calibration line and associated
substitute calibration line (broken Hence, we know the systematic
line), with respect to the back- errors in the analytical
ground or the line of the base
element. values which arise when weelement.

make no background correc-

tion and ignore the resulting curvature of the calibration curve.

We thus have all the facts necessary for answering the questions

posed in the introduction.

We first wish to inquire into the position of the middle

calibration point, which is used in determining the substitute

calibration line. If we could freely choose the concentration of

the alloying element in this calibration specimen, it would

certainly be best to take the middle measurement at the point

where the calibration curve is farthest from the substitute

calibration line. In order to find this point xa, we must differ- /305
entiate C7) with respect to x and set the derivative equal to zero.
We find

0X (12)
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This point of maximum difference is not in general in the middle

of the range, because the curvature of the true calibration curve

is not uniform.

IV. Manipulating the Conversion Formulas

We now wish to show how the different conversion problems

can be selved with the aid of the formulas which have been

developed. We will always start from the normal case, i.e. the

calibration lines and curves being expressed in terms of a line

of the base element G. The calibration equations expressed in

terms of the background;,appear only during the conversion.

1) Given: The true calibration line (with background

correction).

To find: The true calibration curve (without background

correction).

We know the constants n and kO of the calibration line (1).

To make the conversion, the quantity YG - YU must be measured in

the spectra of the specimens. We must check whether YG - YU
in the spectra of the different specimens has the same value

within the unavoidable measuring error. Only then will the

conversion make sense. From all the spectra, we take the mean

value YG - YU

Now we calculate logk U from (3), and then have the equation

of the calibration line expressed in terms of the background (4).

From this equation, we calculate the value of AYU = log (x - 1)

for however many different values of k as we wish. With these

numbers, we consult the numerical tables on the Seidel trans-

formation Csee .12]1 and take the corresponding values of log x =

= AY from the first :column of the table. Finally, we subtract

YG - U from these numbers, thus obtaining AYG. With these

pairs o values (log k,, AYG), we draw the desired true calibration
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curve (without background correction),. expressed in terms of a

line of the base element.

This conversion is important for the following reason: we can

use the calibration curve to prepare for the Owens analyzer a

concentration scale already containing the background correction.

If we wished to determine the calibration curve directly from

measurements on a few calibration specimenbs;,it would not be

possible to do it precisely, because interpolations between the /306

measured points on the curved graph will not be very good, and

because errors in the concentration figures for the calibration

specimens as well as measuring errors will not be recognizable.

Therefore, it is much better to first determine the true calibra-

tion line (with background correction) and from it to calculate

the calibration curve (without background correction). The cali-

bration line can be obtained with sufficient precision from the

measurements on two or three calibration specimens; inaccuracies

in thevconcentration figures show up, and can be checked and

nullified, the same being true of measuring errors. By this

detour, we obtain more reliable figures for the analysis.

2) Given: The true calibration line (with background

correction).

To find: The substitute calibration line (without back-

ground correction) for the range of concentrations from k1 to k2.

We again have n, k0 , and YG - YU and from them calculate,

with the aid of (3), the equation of he true calibration line,

expressed in terms- of the background (4). We substitute kl and

k2 into this equation, obtaining the associated values of AYU

= lg (x.1 .- 12 and TYu = log (x2 - 1). For this purpose, we

find -- most convenien ly by using the numerical table for the

Seidel transformation -- the values of log x1 and log x2.

Equation (9) now gives the slope n' of the substitute calibration

12



line. We substitute this value of n' in C12)., thus obtaining
xa for the point of maximum difference. In (10), we replace x3
by xa, thus acquiring v. Finally, Eq. (11) supplies the dis-
placement of the fixed points. All that remains is to draw a
straight line of slope n' through the fixed point with the coordi-
nates logkO and AY = 0, the line interval extending along the
vertical axis from logk I to logk 2 . We then have the desired
substitute calibration line logk = n'AYG + logkO . From (7),
we can now calculate the improvement for each measurement which
must be added to the analytical result. These improvements can
be recorded once and for all in a table or a curve.

3) Given: A substitute calibration line for the range
between k1 and k2 , determined by three calibration points at kl'
k3 , k2'

To find: The true calibration line for an arbitrary
measuring range (with background correction).

Given are n', k', kl, k2 , k , and YG U . First we apply
Eq. (3) to the numbers represented by symbols with apostrophes,
thus obtaining log kU. Then we know the equation of the substi-
tute calibration line with respect to the background. For kl, k2,and k 3 , we calculate the values of AYU = log x, if the latter are
not already given by the calibration measurements, which is /307
preferable. For this purpose, we find log (x - 1) from the table
of the Seidel transformation- These numbers and Eq. (9) furnish
the slope n of the true calibration line, and then Eq. (10) gives
the distance v between the fixed points. From (11), we obtain
log k0 for the fixed point of the true calibration line, which we
can draw with slope r1 through the fixed point with the coordinates
logk 0 and A4Y 0.,

If the substitute calibration line is to be determined by
more calibration points than just three, the rule given in III.
for its construction must be modified accordingly. For the

13



conversion, we need only three points; the middle point is chosen

so that the conditions (8) are satisfied.

4) Given: A substitute calibration line for the range

between kI and k2 , determined by three calibration points at kl ,
k3, k2 '

To find: The substitute calibration line with the best

fit for another range from kI to kii'

This problem is solved in two steps. First, as in 3), we

determine the true calibration line, and then, as in 2), we

determine the new substitute calibration line for the range

from kI to k i.

The two problems (3) and 4) have great practical significance.

Suppose that by taking several careful calibration spectra, we

had obtained a very accurate main calibration curve for determin-

ing an alloying element Z in a base element G. This calibration

held in a region of higher concentrations of Z, in which the

background behind the powerful analysis line of Z could be ignored.

The calibration curve is drawn as a straight line; it is therefore

a substitute calibration line, valid only in the range encompassed

by the calibration specimens. Now suppose we take the spectrum

of a specimen in which the line of Z is much fainter, so that the

background must be taken into account. If we just extrapolated

the substitute calibration line valid for high concentrations,

the resulting Z concentration would be much too high. What can

be done? One would be very reluctant to remeasure the old

calibrating photographs -- if they are still around -- and to

make the background correction on all the individual values,

although it would be. very nice to exploit the high precision of

the old calibration for the new problem. However, if experience

has shown that .the background at the Z line is constant, the new

calibration can be computed with the aid of the above formulas.
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All we have to do is find YG -YU . This can often be done from
Z

the spectrum of the unknown specimen; there may be other spectra

for specimens of the same type, so that a mean value can be taken. /308

Once we have this number, we can either calculate the true cali-

bration line %(with background correction) or a substitute calibration

line for the lower range.

In view of such cases, which come up quite often in the ongoing

work of a technical laboratory, it is a good idea to simultaneously

determine the number YG - Y in each calibration. This-,makes it

possible to later expand the range of validity of the calibration.

As was shown in a previous work [41, this number must also be known

in order to calculate the detection limit attainable with a given

procedure and the minimum concentration at which a prescribed

accuracy can be adhered to (determination limit).

This answers all the questions of the :int'roduction except

for the first very general one. Before we deal with this one as

well, we wish to make the previous discussion more vivid by means

df a numerical example.

V. Numerical Example

The numerical values of the example come from measurements on

three aluminum specimens of the alloy type A1Mg5, manufactured as

calibrating electrodes by the Wielandwerken in Ulm. These specimens

had been precisely analyzed. The spectra were taken in accordance

with the procedure AV 22 (Zeiss Druckschrift Mess 266/III). For

this work, only the data on the spark discharge and the slit width

of the spectrograph are important, because they determine the

intensity of the background. The sparks were produced with the

Feussner spark generator; the capacitance in the spark circuit was

8100 pF, and the only self-inductance was that of the leads, about

6.10-6 H. The slit width of the Zeiss spectrograph Q 12 was 0.035

mm. Of interest were the calibration curves. for manganese. The
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o
measured line was Mn 2949 A and the base line was Al 3050 A.

The Y values were calculated in the usual way from the optical

densities, then AY, both with and without subtraction of the

background at 2949 A. These values are in columns 5 and 6 of

Table 1. These are mean values from three spectra apiece. In

the fourth column are the values of log k. They are taken for

the concentrations expressed in terms of the Al content of the

specimens. These concentrations must be calculated from columns

2 and 3.

TABLE 1.

1 2 3 4 5 6 7
Specimen % Mn % A log : AY YLu- Yu

5 U 0.10 93.0 - 0.968 - 0.352 - 0.715 0.247
5T 0.28 94,0 - 0.526 - 0.104 - 0.248 0.550
5 S . 0.45 93.5 - 0.318 + 0.066 - 0.041 0.661

With the numbers in Table 1, the true calibration line for

the Mn determination (column 6) and the substitute calibration

line for the range from 0.10tlto 0.45% Mn (column 5) can be drawn.

The measurements are plotted in Fig. 3. For the constants of the
true calibration line we find:

n = 0.1965 and logk 0 = -0.283.

(This line is not drawn in Fig. 3, but instead the true

calibration line calculated from the substitute calibration line.)

The constants of the substitute calibration line are:

i' =1 .555 and logkO = -0.393.

This line is drawn as an interval in Fig. 3, and the fixed
point k6 is indicated. The deviations of the three measurements

16



from the straight line are so small that one would hardly draw a /309

nonlinear calibration curve through them if one knew nothing of

the interrelationships. The systematic errors in analysis which

would result from this carelessness will be discovered as we

calculate through the example.

-. - -02 0 , For the calculation, we

Is~ --- _ require YG - Y The mean

value for this quantity,

-- determined from numerous

spectra, was 0.610. The

background for the middle

rh hspecimen was somewhat fainter

than for the two outer ones;

Y - Y was thus not quiteG U
constan%, but about 0.05

S--i larger for the middle specimen.

C i However, this variability has

,1 i no major influence on the

Fig. 3. True calibration line calculation, so we express

and substitute calibration line everything in terms of a
for determining manganese infor determining manganese in normal value for the background.
aluminum alloys. (Bottom right:
correction curve for substitute
calibration line; broken line:
substitute calibration line for
0.05% through 0.2%)' values of AYU by adding 0.610

Key: a. True calibration line to each of the numbers in

(calculated) column 5. This gives 0.258,
b. Substitute calibration

line 0.506, and 0.676, respec-

c. Correction tively. For each of these

numbers AYI = log x, we look

up the corresponding value of AYU = log (x.- 1) and find -0.091,

0.344, and 0.573.
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With these numbers, we obtain from (9) and (10). r = 0.980
and v = 0.470.

Equation (11) then supplies logk 0 = 0.274. Thus we have
found the constants of the true calibration line; they are only
slightly different from those previously derived directly from
the measurements. The calculated calibration line is drawn in
Fig. 3; it fits well with the measurements. If for YG - Y
instead of 0.610, we had employed the corresponding value (oof
0.599 for specimen 5U, we would have found n = 0.962 and logk 0 =
= -0.271. The slope would then agree better, but the line would
be situated somewhat above all three measured points. Calculating
with a mean value for the background was therefore correct.

By Eq. (12), the point of maximum error on the substitute /310
calibration line is xa = 2.70. The associated AYT is logx a - 0.610 =

= -0.179. This point is indicated in Fig. 3 by an arrow. The
improvement h(xa) is #0.026, corresponding to 6.2% of the concentra-
tion. Such large systematic errors could therefore occur if this
substitute calibration curve were used without correction. By com-
parison, the random measuring errors in the analysis are much smaller,
because the dispersion of the method is less than 2%. The high
internal accuracy of such a completel analytical method can therefore
be exploited only when the influence of the background is taken
into account in the analysis.

The corrections which must be made in using substitute calibra-
tion lines can be calculated from (7). The correction function is
plotted in Fig. 3 below the substitute calibration line. This
graph shows the great increase in correction required outside the
range of validity of the substitute calibration line.

When the background in the spectra of all specimens to be
analyzed by the same calibration system is roughly constant, so that
the theory is applicable, it is then beneficial to establish the
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corrections once and for all, e.g. in the form of the. correction

curve for the substitute calibration line. Then, the background

does not have to be measured in each analysis, thus avoiding the

random errors which would be introduced into the analysis by an

additional measurement of the background density.

We now wish to discover the substitute calibration line for

a low concentration range. We pick the range between 0.2% and

0.05%, which overlaps the lower end of the old range.

k = 0.05; log kI = -1.3; kI = 0.2; logkI = -0.7.

With the previously calculated values for the true calibra-

tion line, we obtain from (3) logk U 
= -0.872, and thus for the

equation of the calibration line with respect to the background

log k o,9SA u -u 0.872.

Inoittvwe substitute the values for logk I and logk II, thus

obtaining for the associated AYU = log (x - 1): -0.4 3 7 and +0,.176.

The corresponding values of logx are 0.137 and 0.398. Now we

can calculate n' from (9). n' = 2.28; then from (12), xa = 1.75

with log x a = 0.243 and log (x a - 1) = -0.125. We substitute

this value of xa in Eq. (10), and obtain the value 0.707 for v.

From (11), we then get logkO = -0.189. Thus we have the

constants for the new substitute calibration line and can draw it.

It is the broken line in Fig. 3. From (7), we now calculate the

maximum value for the correction in the new range by substituting

the numbers for xa . We find h(x a ) =0.030, corresponding to 7.2%

of the content.

Lastly, we also wish to calculate what would have happened

if we had used the old substitute calibration line down to 0.05%.

For this purpose, using n' and v of the old substitute calibration

line as well as the logarithms associated with 0.05%, which we

have already calculated, we obtain from Eq. (7):
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h(0.05%) = :-0.98.0.437 - 1.555-0.135 + 0..470 = -0.168,

This corresponds to 47.2% of the content. Thus, instead of

the true Mn content of 0.05%, we would have obtained much too

high a value, namely 0.074%, if we had extended the old sAbsti-

tute calibration line downward.

VI. When Is the Background Correction Necessary? /311

It would be very bothersome if we had to calculate through

all the formulas every time in order to decide whether the

influence of the background is so strong that it must be taken

into account, or whether we can use a substitute calibration line

for the analysis. We need a simple criterion.

Obviously, the smaller a concentration range, the better a

substitute calibration line drawn for it will be. If we wish to

answer the question, we must therefore prescribe the extent of

the concentration range. Another relevant factor is the intensity

of the analysis line in comparison with the background. This

factor can be gauged by means of the quantity I

IT L+ u- Y, = A YI 10ogx.

The analysis line is relatively faintest in the spectrum of

a specimen whose content lies at the lower end of the prescribed

range. Thus we are interested in the smallest value of AYU, the

value at the.l:lower end of the range. This we will designate

with the symbol 4U;

AU = 47 L+U Y at the lower limit of the concen-
tration range of a calibration.

From the formulas in this paper, we can now calculate the

maximum error which can occur within a given concentration range

when AU has a specific value. The maximum error in a given

concentration range occurs at the concentration corresponding to
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x a . If we first substitute xa in (10) and then in (7), we find:

2h(x) = log a -d- + 1'logx - 'logx . (13)I, - ].

In order to calculate this quantity as a function of the con-

centration range k2/kI and of AU, we proceed as follows: we take

a normal value for n, and set n = i. Then,!,because of (4),

log (k2/k1) = og (X2 -1) 1-- -

From this we obtain:

X2 1 + k -1). (14)

The given value of AU is log x1l; thus we also have log (xl - i).

Thus we have all the quantities we need to calculate the maximum /312

error from (13) via (9), (12) and (10).

This is done in Fig. 4. On the left side is given the error

in the logarithm of the concentration, and on the right the cor-

responding error as a percentage of the concentration. There are

curves for concentration ranges of various widths, from 1:2 to 1:1000.

An example will illustrate the use of Fig. 4:

We stipulate that the systematic error in analysis should be

less than 2%. The calibration covers a concentration range of 1:10,
e.g. the range from 0.04% to 0.40% or from 1.2% to 12%. In that

case, according to Fig. 4, the crucial value of AU must be larger

than 0.8 if the background correction is to be eliminated. In

order to clarify the meaning of this condition, recall that in the

middle UV, the slope of the density curves is roughly 1, so that

6Y A AS for densities in the upper straight portion of the density

curve CS greater than about 0.5). The condition AU > 0..8 would

then mean that the density difference between line + background
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Fig. 4. Maximum systematic error in neglecting background.

(Slope of calibration curve n =  A; AU = logx I = YL+U - YU
for lower end of range).

Key: a. Concentration range
b. Error

and the background by itself at the lowest concentration in the

calibrating range must be at least 0.8. The condition is there-

fore relatively strict.

The curves in Fig. 4 hold for n = 1. However, they can be /313

used for any other values of n by multiplying the numbers on the
error scale by n. According to (9), , therefore according

to Cl0), v " n as well, and thus by (12) and (7), h(xa) n too.

Figure 4 is a kind of alert table for work in a spectrochemical
laboratory; it gives a complete answer to the first, important

question of the introduction.

In Fig. 4, it is striking that the curves for AU 0 tend

toward finite limits. In other words, neglecting the background

22
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does not produce arbitrarily large errors,: even when the line is

barely visible against the background. Z. Bochnicek has derived

the following formula for these limits:

~2 h(xa)juo.=log MI 1 1
10 +  1og lo (15)

log-- - -1

This formula is obtained by expanding AU = logx 1 for small
values, logx 1  :( 1..-. l).loge, and then running through Eqs.

(9), (12), and (13).

I am indebted to Z. Bochaticek, who calculated the numerical

Values for the curves in Fig. 4, and to A. Richter for her care-

ful preparation of the spectra and analyses for the numerical

example in V.

Appendix. Background Correction with Incorrect Filter Value

In the work on systematic errors in analysis [5], the follow-

ing question was left open: what is the effect on the background

correction if all the intensity ratios have been calculated with

an incorrect filter value AYm! We now have the meansato answer

this question.

As in [5], we again designate the true values with small

letters, and those calculated with the incorrect filter value

with capital letters. The error factor of the filter value is

f = AYm/iA m . All calculated AY' are incorrect by this factor;

-AY' = fy'. (16)

The correction factor D is tabulated in [2] as a function of

Z IU =L U 2U
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for clarity, we write D(,AYI .. The background correction supplies /3114

the intensity ratio of the line by itself to the background;

Av = Ay'- D(Ay). (17)

The physical relationship between the concentration and the

intensity ratio is given by the equation of the true calibration

line (4), which we must now write with lower-case letters:

logk = iA Ly, 4- logI . // (14a)

Substituting (17) into (4a), we obtain the physical relation-

ship between the concentration and the uncorrected intensity ratio

AYU, i.e. the equation of the true calibration curve:

logk = ijiAy- ,lD(Ayb) + logk:u. (18)

Then we substitute (16) and find:

logk= AYE - nD , log/ku. (19)

This is the equation of the calibration curve actually found

as a result of calibration spectra; this is because we are only

able to calculate the values of AYU. If we are working in a con-

centration range in which this curve has a pronounced curvature,

we will make a background correction in order to straighten it out.

Since we are not aware of the incorrect filter value, we do this

with the systematically incorrect values AYU and calculate:

-AY = z -  I)(A Y'). (20)

The calculated values AYU and the true values AyU are there-

fore not related'iby, C16), This is the crucial feature.
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We substitute (20)' in (19) and obtain the equation of the

calculated corrected calibration curve:

logr, 1  I -- D(JY)-D- A (21)

Were f = 1, i.e. if the filter value were correct, then the

expression in brackets would vanish; and we would have the Equation

(4a) of the true calibration line. If f # 1, the value of the

expression in brackets is a function of AYU; the corrected

calibration curve is also curved, and the background correction

does not bring about the desired complete straightening of the

calibration curve, as long as an incorrect filter value is

employed in the calculation.

To see what has been achieved anyway, we wish to examine more /315

closely the form of the corrected curve (21). For large values of

AYU, i.e. at relatively high concentrations, both terms in the

brackets are :small. At its upper end, the curve approaches the

straight line

log k = AY, + logku.

The straight line passes through the fixed point of the true

calibration line, but has a different slope. In our analysis

with the incorrect filter value, we would find this line as the

calibration line, if it were possible to measure directly the

intensity of ithe line by itself, without the underlying background.

However, we do not find it, because we are always compelled to go

by way of the background correction.

For small values of AYU, i.e. for relatively low concentra-

tions, we take the common approximation formula

Ay ' = log xz 0.34 (x - 1).
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This implies AY e :log AY", + 0.362, and by (17),

D(A Y',) J Yi - log A Y - 0.362. (22)

Correcting terms in the brackets in (21), and using the

approximation for AY in the reverse direction, we finally obtain

as an approximation formula for (21) in the region of low con-

centrations:

logk ;.Y U + logk/- logf. (23)

This is a calibration line with the same slope as the true calibra-

tion line, but with a fixed point shifted by -nlog f.,

At both ends, the calculated calibration curve is therefore a

straight line, but with the slope n/f at the upper end, and the

slope n at the lower end; in between, there is a transition with

continuous curvature. The calibration curve (19) for AY&, on

the other hand, has the slope n/f at the upper end, but +- at

the lower end; its curvature in the transition region is therefore

much greater. In any case therefore, the background correction

provides a partial straightening of the calibration curve; it

may be enough so that a straight-line calibration curve can be

drawn in limited concentration ranges. Caution will be necessary,

however, if extrapolations over larger ranges are required, as

in calculating spectrochemical detection limits (see [4]).

So far we have only talked about calibration curves expressed /316

in terms of a background. What happens with calibration curves

expressed in terms of a line of the base element?

For the fixed point of the true calibration line, (3) implies

logk. 7= logk + (.y-.u.).

In the equations of the calibration .curves, which were cal-

culated with the incorrect filter value, we must set
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A Y, = A $C + (Y- -- J gGog- z]" I

The equation for the upper asymptote: of (21) then becomes

logk -- AYY + Iogku + i(Yc- Iuz)- (24)

Hence, this line has the same fixed point k0 as the true calibra-

tion line.

For the other asymptote (23), we find

logk= A+ y(y- yvz) + log ku - q logf.

From it, we subtract the equation of the true calibration line

expressed in terms of the base line, so that we are left with:

d Yc - yC- (f -1)(yc -yUz) - log f. (25)

This means that the lower asymptote is shifted along the horizontal

axis, relative to the true calibration line, by the amount on the

right side of (25).

The easy way to remember this situation is: the upper asymptote

passes through the same fixed point, and the lower one has the same

slope as the true calibration line.

Figure 5 presents an example for calibration curves calculated

with an incorrect filter value, compared with the correct curves.

In this case, the error factor f is 1.5, ile. very high, in order

to make the differences stand out. This would mean, for instance,

that the transmittance of a filter was taken to be 35% when it was

really 50%. The slope of the true calibration line is 1.0;

S-Yu = .300 With these figures, the shift of the lower

2his value (Yq - YUZ - = -1.3 is chosen so that the different curves
in the diagram will be well separated. This value would mean that the
background behind the alloying-eaement line was 20 times as strong as
the line of the base element. This could hardly occur. At any rate,
such an assumption can be given an illustrative meaning: if the spec-
trum were taken with a step filter, and the base line in the attenuated
stage compared with the alloying-element line in the unattenuated one,
such a ratio would be conceivable. 27



asymptote relative to the true calibration line will be 0.826,

by (25). This crude example shows that it is generally permissible

to round off the filter value AYm a bit, to make the calculations

more convenient. Over reasonably small concentration ranges, the

corrected calibration curves will still be sufficiently straight,

and the systematic errors due to the changed slope and the lateral

displacement can be compensated for in the calibration.

For the idea of the
tog

k. investigation described in

2D .. this Appendix, I)iam indebted

to my coworker K., Polack,

my gratitude to him.

0 a ixp

-0.5 0. 05 o 1.5 0 2.5 10 3.5 4.0
. . •. y -

Fig. 5. The true calibration
curves (AyG and AyG) and the
calibration curves found when an
incorrect filter value is used
(AYG and AY6). (Slope of the
true calibration line n = 1;
error factor of the filter value
f = 1.5; YG - YUz = -1.300.)

Key: a. Fixed point
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